Examples from MathML4

Content Markup

Introduction

The Intent of Content Markup

The Structure and Scope of Content MathML Expressions

Strict Content MathML

Content Dictionaries

Content MathML Concepts

Content MathML Elements Encoding Expression Structure

Numbers <cn>

Rendering <cn>,<sep/>-Represented Numbers
Strict uses of <cn>
                        
<cn type="hexdouble">7F800000</cn>
                     
Non-Strict uses of <cn>
                        <cn base="16">7FE0</cn>
                     
                        <cn base="1000">10F</cn>
                     
                        <cn type="rational">22<sep/>7</cn>
                     
                        
<cn type="complex-cartesian"> 12.3 <sep/> 5 </cn>

                     
                        
<cn type="complex-polar"> 2 <sep/> 3.1415 </cn>
                     
Rewrite: cn sep
                  
<cn type="rational" base="b">n<sep/>d</cn>
               
                  
<apply><csymbol cd="nums1">rational</csymbol>
  <cn type="integer" base="b">n</cn>
  <cn type="integer" base="b">d</cn>
</apply>
               
Rewrite: cn based_integer
                  
<cn type="integer" base="16">FF60</cn>
               
                  
<apply><csymbol cd="nums1">based_integer</csymbol>
  <cn type="integer">16</cn>
  <cs>FF60</cs>
</apply>
               
Rewrite: cn constant
                     <cn type="constant">c</cn>
                  
                     <csymbol cd="nums1">c2</csymbol>
                  
Rewrite: cn presentation mathml
                     
<cn type="rational"><mi>P</mi><sep/><mi>Q</mi></cn>
                  
                     
<apply><csymbol cd="nums1">rational</csymbol>
 <semantics>
  <ci>p</ci>
  <annotation-xml encoding="MathML-Presentation">
   <mi>P</mi>
  </annotation-xml>
 </semantics>
 <semantics>
  <ci>q</ci>
  <annotation-xml encoding="MathML-Presentation">
   <mi>Q</mi>
  </annotation-xml>
 </semantics>
</apply>
                  

Content Identifiers <ci>

               <ci>x</ci>
            
Strict uses of <ci>
                  <ci type="integer">n</ci>
               
                  
<semantics>
  <ci>n</ci>
  <annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content">
    <csymbol cd="mathmltypes">integer_type</csymbol>
  </annotation-xml>
</semantics>
               
Non-Strict uses of <ci>
Rewrite: ci type annotation
                     <ci type="T">n</ci>
                  
                     
<semantics>
  <ci>n</ci>
  <annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content">
    <ci>T</ci>
  </annotation-xml>
</semantics>
                  
Rewrite: ci presentation mathml
                     <ci><mi>P</mi></ci>
                  
                     
<semantics>
  <ci>p</ci>
  <annotation-xml encoding="MathML-Presentation">
    <mi>P</mi>
  </annotation-xml>
</semantics>
                  
                  
<ci>
  <msup><mi>C</mi><mn>2</mn></msup>
</ci>
               
                  
<semantics>
  <ci>C2</ci>
  <annotation-xml encoding="MathML-Presentation">
    <msup><mi>C</mi><mn>2</mn></msup>
  </annotation-xml>
</semantics>
               
Rendering Content Identifiers
                  <ci type="vector">V</ci>
               

Content Symbols <csymbol>

Strict uses of <csymbol>
Non-Strict uses of <csymbol>
Rewrite: csymbol type annotation
                     <csymbol type="T">symbolname</csymbol>
                  
                     
<semantics>
  <csymbol>symbolname</csymbol>
  <annotation-xml cd="mathmltypes" name="type" encoding="MathML-Content">
    <ci>T</ci>
  </annotation-xml>
</semantics>
                  
Rendering Symbols

String Literals <cs>

               
<set>
  <cs>A</cs><cs>B</cs><cs>  </cs>
</set>
            

Function Application <apply>

Strict Content MathML
                  <apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><ci>y</ci></apply>
               
                  
<apply><csymbol cd="arith1">plus</csymbol>
  <ci>x</ci>
  <ci>y</ci>
  <ci>z</ci>
</apply>
               
                  
<apply><csymbol cd="arith1">plus</csymbol>
  <apply><csymbol cd="arith1">times</csymbol>
    <ci>a</ci>
    <ci>x</ci>
  </apply>
  <ci>b</ci>
</apply>
               
                  
<apply><csymbol cd="arith1">times</csymbol>
  <apply><csymbol cd="arith1">plus</csymbol>
    <ci>F</ci>
    <ci>G</ci>
  </apply>
  <ci>x</ci>
</apply>
               
                  <apply><csymbol cd="arith1">plus</csymbol><ci>F</ci><ci>G</ci></apply>
               
                  
<apply>
  <apply><csymbol cd="arith1">plus</csymbol>
    <ci>F</ci>
    <ci>G</ci>
  </apply>
  <ci>x</ci>
</apply>
               
Rendering Applications
                  
<apply><ci>f</ci>
  <ci>a1</ci>
  <ci>a2</ci>
  <ci>...</ci>
  <ci>an</ci>
</apply>
               
                  
<apply><ci>op</ci>
  <bvar><ci>x</ci></bvar>
  <domainofapplication><ci>d</ci></domainofapplication>
  <ci>expression-in-x</ci>
</apply>
               

Bindings and Bound Variables <bind> and <bvar>

Bindings
Bound Variables
                  
<bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci id="var-x">x</ci></bvar>
  <apply><csymbol cd="relation1">lt</csymbol>
    <ci xref="var-x">x</ci>
    <cn>1</cn>
  </apply>
</bind>
               
               
<bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><csymbol cd="relation1">eq</csymbol>
    <apply><csymbol cd="arith1">plus</csymbol><ci>x</ci><ci>y</ci></apply>
    <apply><csymbol cd="arith1">plus</csymbol><ci>y</ci><ci>x</ci></apply>
  </apply>
</bind>
            
Renaming Bound Variables
Rendering Binding Constructions
                  
<bind><ci>b</ci>
  <bvar><ci>x1</ci></bvar>
  <bvar><ci>...</ci></bvar>
  <bvar><ci>xn</ci></bvar>
  <ci>s</ci>
</bind>
               

Structure Sharing <share>

The share element
                              
<apply><ci>f</ci>
  <apply><ci>f</ci>
    <apply><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
    <apply><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
  </apply>
  <apply><ci>f</ci>
    <apply><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
    <apply><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
  </apply>
</apply>
                           
                              
<apply><ci>f</ci>
  <apply id="t1"><ci>f</ci>
    <apply id="t11"><ci>f</ci>
      <ci>a</ci>
      <ci>a</ci>
    </apply>
    <share src="#t11"/>



  </apply>
  <share src="#t1"/>









</apply>
                           
An Acyclicity Constraint
Structure Sharing and Binding
                  
<bind id="outer"><csymbol cd="fns1">lambda</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><ci>f</ci>
    <bind id="inner"><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <share id="copy" src="#orig"/>
    </bind>
    <apply id="orig"><ci>g</ci><ci>x</ci></apply>
  </apply>
</bind>
               
Rendering Expressions with Structure Sharing

Attribution via semantics

Error Markup <cerror>

               
<cerror>
  <csymbol cd="aritherror">DivisionByZero</csymbol>
  <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>
</cerror>
            
               
<apply><csymbol cd="relation1">eq</csymbol>
  <cerror>
    <csymbol cd="aritherror">DivisionByZero</csymbol>
    <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>
  </cerror>
  <cn>0</cn>
</apply>
            
               
<cerror>
  <csymbol cd="aritherror">DivisionByZero</csymbol>
  <apply><csymbol cd="arith1">divide</csymbol><ci>x</ci><cn>0</cn></apply>
</cerror>
            
               
<cerror>
  <csymbol cd="error">Illegal bound variable</csymbol>
  <cs> &lt;bvar&gt;&lt;plus/&gt;&lt;/bvar&gt; </cs>
</cerror>
            

Encoded Bytes <cbytes>

Content MathML for Specific Structures

Container Markup

Container Markup for Constructor Symbols
                     <set><ci>a</ci><ci>b</ci><ci>c</ci></set>
                  
                     <apply><csymbol cd="set1">set</csymbol><ci>a</ci><ci>b</ci><ci>c</ci></apply>
                  
                     
<set>
  <bvar><ci>x</ci></bvar> 
  <domainofapplication><integers/></domainofapplication>
  <apply><times/><cn>2</cn><ci>x</ci></apply>
</set>
                  
                     
<apply><csymbol cd="set1">map</csymbol>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <apply><csymbol cd="arith1">times</csymbol>
      <cn>2</cn>
      <ci>x</ci>
    </apply>
  </bind>
  <csymbol cd="setname1">Z</csymbol>
</apply>
                  
Container Markup for Binding Constructors
                  <lambda><bvar><ci>x</ci></bvar><ci>x</ci></lambda>
               
                  
<bind><csymbol cd="fns1">lambda</csymbol>
 <bvar><ci>x</ci></bvar><ci>x</ci>
</bind>
               

Bindings with <apply>

                  
<apply><forall/>
  <bvar><ci>x</ci></bvar>
  <apply><geq/><ci>x</ci><ci>x</ci></apply>
</apply>
               
                  
<bind><csymbol cd="logic1">forall</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><csymbol cd="relation1">geq</csymbol><ci>x</ci><ci>x</ci></apply>
</bind>
               
                  
<apply><sum/>
  <bvar><ci>i</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><cn>100</cn></uplimit>
  <apply><power/><ci>x</ci><ci>i</ci></apply>
</apply>
               
                  
<apply><csymbol cd="arith1">sum</csymbol>
  <apply><csymbol cd="interval1">integer_interval</csymbol>
    <cn>0</cn>
    <cn>100</cn>
  </apply>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>i</ci></bvar>
    <apply><csymbol cd="arith1">power</csymbol>
      <ci>x</ci>
      <ci>i</ci>
    </apply>
  </bind>
</apply>
               

Qualifiers

Uses of <domainofapplication>, <interval>, <condition>, <lowlimit> and <uplimit>
                  
<apply><int/>
  <domainofapplication>
    <ci type="set">C</ci>
  </domainofapplication>
  <ci type="function">f</ci>
</apply>
               
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <interval><cn>0</cn><cn>1</cn></interval>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>
               
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><cn>1</cn></uplimit>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>
               
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><and/>
      <apply><leq/><cn>0</cn><ci>x</ci></apply>
      <apply><leq/><ci>x</ci><cn>1</cn></apply>
    </apply>
  </condition>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>
               
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <domainofapplication>
    <set>
      <bvar><ci>t</ci></bvar>
      <bvar><ci>u</ci></bvar>
      <condition>
        <apply><and/>
          <apply><leq/><cn>0</cn><ci>t</ci></apply>
          <apply><leq/><ci>t</ci><cn>1</cn></apply>
          <apply><leq/><cn>0</cn><ci>u</ci></apply>
          <apply><leq/><ci>u</ci><cn>1</cn></apply>
        </apply>
      </condition>
      <list><ci>t</ci><ci>u</ci></list>
    </set>
  </domainofapplication>
  <apply><times/>
    <apply><power/><ci>x</ci><cn>2</cn></apply>
    <apply><power/><ci>y</ci><cn>3</cn></apply>
  </apply>
</apply>
               
Rewrite: interval qualifier
                  
<apply><ci>H</ci>
  <bvar><ci>x</ci></bvar>
  <lowlimit><ci>a</ci></lowlimit>
  <uplimit><ci>b</ci></uplimit>
  <ci>C</ci>
</apply>
               
                  
<apply><ci>H</ci>
  <bvar><ci>x</ci></bvar>
  <domainofapplication>
    <apply><csymbol cd="interval1">interval</csymbol>
      <ci>a</ci>
      <ci>b</ci>
    </apply>
  </domainofapplication>
  <ci>C</ci>
</apply>
               
Rewrite: condition
Rewrite: restriction
                  
<apply><ci>F</ci>
  <domainofapplication>
    <ci>C</ci>
  </domainofapplication>
  <ci>a1</ci>
  <ci>an</ci>
</apply>
               
                  
<apply>
  <apply><csymbol cd="fns1">restriction</csymbol>
    <ci>F</ci>
    <ci>C</ci>
  </apply>
  <ci>a1</ci>
  <ci>an</ci>
</apply>
               
Rewrite: apply bvar domainofapplication
Uses of <degree>
               
<apply><diff/>
  <bvar>
    <ci>x</ci>
    <degree><cn>2</cn></degree>
  </bvar>
  <apply><power/><ci>x</ci><cn>4</cn></apply>
</apply>
            
Uses of <momentabout> and <logbase>

Operator Classes

Rewrite: element
               <plus/>
            
                  <csymbol cd="arith1">plus</csymbol>
               
N-ary Operators (classes nary-arith, nary-functional, nary-logical, nary-linalg, nary-set, nary-constructor)
Schema Patterns
Rewriting to Strict Content MathML
Rewrite: n-ary domainofapplication
                        
<apply><union/>
  <bvar><ci>x</ci></bvar>
  <domainofapplication><ci>D</ci></domainofapplication>
  <ci>expression-in-x</ci>
</apply>
                     
                        
<apply><csymbol cd="fns2">apply_to_list</csymbol>
  <csymbol cd="set1">union</csymbol>
  <apply><csymbol cd="list1">map</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <ci>expression-in-x</ci>
    </bind>
    <ci>D</ci>
  </apply>
</apply>
                     
N-ary Constructors for set and list (class nary-setlist-constructor)
Schema Patterns
Rewriting to Strict Content MathML
Rewrite: n-ary setlist domainofapplication
                        
<set>
  <bvar><ci>x</ci></bvar>
  <domainofapplication><ci>D</ci></domainofapplication>
  <ci>expression-in-x</ci>
</set>
                     
                        
<apply><csymbol cd="set1">map</csymbol>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <ci>expression-in-x</ci>
  </bind>
  <ci>D</ci>
</apply>
                     
N-ary Relations (classes nary-reln, nary-set-reln)
Schema Patterns
Rewriting to Strict Content MathML
Rewrite: n-ary relations
                        
<apply><lt/>
  <ci>a</ci><ci>b</ci><ci>c</ci><ci>d</ci>
</apply>
                     
                        
<apply><csymbol cd="fns2">predicate_on_list</csymbol>
 <csymbol cd="reln1">lt</csymbol>
 <apply><csymbol cd="list1">list</csymbol>
  <ci>a</ci><ci>b</ci><ci>c</ci><ci>d</ci>
 </apply>
</apply>

                     
Rewrite: n-ary relations bvar
                        
<apply><lt/>
 <bvar><ci>x</ci></bvar>
 <domainofapplication><ci>R</ci></domainofapplication>
 <ci>expression-in-x</ci>
</apply>
                     
                        
<apply><csymbol cd="fns2">predicate_on_list</csymbol>
 <csymbol cd="reln1">lt</csymbol>
 <apply><csymbol cd="list1">map</csymbol>
   <ci>R</ci>
   <bind><csymbol cd="fns1">lambda</csymbol>
     <bvar><ci>x</ci></bvar>
     <ci>expression-in-x</ci>
   </bind>
  </apply>
</apply>
                     
N-ary/Unary Operators (classes nary-minmax, nary-stats)
Schema Patterns
Rewriting to Strict Content MathML
Rewrite: n-ary unary set
                     
<apply><max/><ci>a1</ci><ci>a2</ci><ci>an</ci></apply>
                  
                     
<apply><csymbol cd="minmax1">max</csymbol>
  <apply><csymbol cd="set1">set</csymbol>
    <ci>a1</ci><ci>a2</ci><ci>an</ci>
  </apply>
</apply>
                  
Rewrite: n-ary unary domainofapplication
                        
<apply><max/>
  <bvar><ci>x</ci></bvar>
  <domainofapplication><ci>D</ci></domainofapplication>
  <ci>expression-in-x</ci>
</apply>
                     
                        
<apply><csymbol cd="minmax1">max</csymbol>
  <apply><csymbol cd="set1">map</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <ci>expression-in-x</ci>
    </bind>
    <ci>D</ci>
  </apply>
</apply>
                     
Rewrite: n-ary unary single
                     
<apply><max/><ci>a</ci></apply>
                  
                     
<apply><csymbol cd="minmax1">max</csymbol> <ci>a</ci> </apply>
                  
Binary Operators (classes binary-arith, binary-logical, binary-reln, binary-linalg, binary-set)
Schema Patterns
Unary Operators (classes unary-arith, unary-linalg, unary-functional, unary-set, unary-elementary, unary-veccalc)
Schema Patterns
Constants (classes constant-arith, constant-set)
Schema Patterns
Quantifiers (class quantifier)
Schema Patterns
Rewriting to Strict Content MathML
Rewrite: quantifier
                        
<apply><exists/>
  <bvar><ci>x</ci></bvar>
  <domainofapplication><ci>D</ci></domainofapplication>
  <ci>expression-in-x</ci>
</apply>
                     
                        
<bind><csymbol cd="quant1">exists</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><csymbol cd="logic1">and</csymbol>
    <apply><csymbol cd="set1">in</csymbol><ci>x</ci><ci>D</ci></apply>
  <ci>expression-in-x</ci>
  </apply>
</bind>

                     
Other Operators (classes lambda, interval, int, diff partialdiff, sum, product, limit)
Schema Patterns

Non-strict Attributes

Rewrite: attributes
                  
<ci class="foo" xmlns:other="http://example.com" other:att="bla">x</ci>
               
                  
<semantics>
  <ci>x</ci>
  <annotation cd="mathmlattr"
     name="class" encoding="text/plain">foo</annotation>
  <annotation-xml cd="mathmlattr" name="foreign" encoding="MathML-Content">
    <apply><csymbol cd="mathmlattr">foreign_attribute</csymbol>
      <cs>http://example.com</cs>
      <cs>other</cs>
      <cs>att</cs>
      <cs>bla</cs>
    </apply>
  </annotation-xml>
</semantics>
               

Content MathML for Specific Operators and Constants

Functions and Inverses

Interval <interval>
                  
<interval closure="open"><ci>x</ci><cn>1</cn></interval>
               
                  
<interval closure="closed"><cn>0</cn><cn>1</cn></interval>
               
                  
<interval closure="open-closed"><cn>0</cn><cn>1</cn></interval>
               
                  
<interval closure="closed-open"><cn>0</cn><cn>1</cn></interval>
               
Inverse <inverse>
                  
<apply><inverse/>
  <ci> f </ci>
</apply>
               
                  
<apply>
  <apply><inverse/><ci type="matrix">A</ci></apply>
  <ci>a</ci>
</apply>
               
Lambda <lambda>
                  
<lambda>
  <bvar><ci> x </ci></bvar>
  <domainofapplication><integers/></domainofapplication>
  <apply><sin/><ci> x </ci></apply>
</lambda>
               
                  
<lambda>
  <domainofapplication><integers/></domainofapplication> 
  <sin/>
</lambda>
               
                  
<lambda>
  <bvar><ci>x</ci></bvar>
  <apply><sin/>
    <apply><plus/><ci>x</ci><cn>1</cn></apply>
  </apply>
</lambda>
               
Rewrite: lambda
                  
<lambda>
  <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
  <ci>expression-in-x1-xn</ci>
</lambda>
               
                  
<bind><csymbol cd="fns1">lambda</csymbol>
  <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
  <ci>expression-in-x1-xn</ci>
</bind>
               
Rewrite: lambda domainofapplication
                  
<lambda>
  <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
  <domainofapplication><ci>D</ci></domainofapplication>
  <ci>expression-in-x1-xn</ci>
</lambda>
               
                  
<apply><csymbol cd="fns1">restriction</csymbol>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x1</ci></bvar><bvar><ci>xn</ci></bvar>
    <ci>expression-in-x1-xn</ci>
  </bind>
  <ci>D</ci>
</apply>
               
Function composition <compose/>
                  
<apply><compose/><ci>f</ci><ci>g</ci><ci>h</ci></apply>
               
                  
<apply><eq/>
  <apply>
    <apply><compose/><ci>f</ci><ci>g</ci></apply>
    <ci>x</ci>
  </apply>
  <apply><ci>f</ci><apply><ci>g</ci><ci>x</ci></apply></apply>
</apply>
               
Identity function <ident/>
                  
<apply><eq/>
  <apply><compose/>
    <ci type="function">f</ci>
    <apply><inverse/>
      <ci type="function">f</ci>
    </apply>
  </apply>
  <ident/>
</apply>
               
Domain <domain/>
                  
<apply><eq/>
  <apply><domain/><ci>f</ci></apply>
  <reals/>
</apply>
               
codomain <codomain/>
                  
<apply><eq/>
  <apply><codomain/><ci>f</ci></apply>
  <rationals/>
</apply>
               
Image <image/>
                  
<apply><eq/>
  <apply><image/><sin/></apply>
  <interval><cn>-1</cn><cn> 1</cn></interval>
</apply>
               
Piecewise declaration <piecewise>, <piece>, <otherwise>
                  
<piecewise>
  <piece>
    <apply><minus/><ci>x</ci></apply>
    <apply><lt/><ci>x</ci><cn>0</cn></apply>
  </piece>
  <piece>
    <cn>0</cn>
    <apply><eq/><ci>x</ci><cn>0</cn></apply>
  </piece>
  <piece>
    <ci>x</ci>
    <apply><gt/><ci>x</ci><cn>0</cn></apply>
  </piece>
</piecewise>
               
                  
<piecewise>
  <piece>
    <cn>0</cn>
    <apply><lt/><ci>x</ci><cn>0</cn></apply>
  </piece>
  <piece>
    <cn>1</cn>
    <apply><gt/><ci>x</ci><cn>1</cn></apply>
  </piece>
  <otherwise>
    <ci>x</ci>
  </otherwise>
</piecewise>
               
                  
<apply><csymbol cd="piece1">piecewise</csymbol>
  <apply><csymbol cd="piece1">piece</csymbol>
    <cn>0</cn>
    <apply><csymbol cd="relation1">lt</csymbol><ci>x</ci><cn>0</cn></apply>  
  </apply>   
  <apply><csymbol cd="piece1">piece</csymbol>
    <cn>1</cn>
    <apply><csymbol cd="relation1">gt</csymbol><ci>x</ci><cn>1</cn></apply>  
  </apply>   
  <apply><csymbol cd="piece1">otherwise</csymbol>
    <ci>x</ci>
  </apply>   
</apply>
               

Arithmetic, Algebra and Logic

Quotient <quotient/>
                  
<apply><quotient/><ci>a</ci><ci>b</ci></apply>
               
Factorial <factorial/>
                  
<apply><factorial/><ci>n</ci></apply>
               
Division <divide/>
                  
<apply><divide/>
  <ci>a</ci>
  <ci>b</ci>
</apply>
               
Maximum <max/>
                  
<apply><max/><cn>2</cn><cn>3</cn><cn>5</cn></apply>
               
                  
<apply><max/>
  <bvar><ci>y</ci></bvar>
  <condition>
    <apply><in/>
      <ci>y</ci>
      <interval><cn>0</cn><cn>1</cn></interval>
    </apply>
  </condition>
  <apply><power/><ci>y</ci><cn>3</cn></apply>
</apply>
               
Minimum <min/>
                  
<apply><min/><ci>a</ci><ci>b</ci></apply>
               
                  
<apply><min/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><notin/><ci>x</ci><ci type="set">B</ci></apply>
  </condition>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>
               
Subtraction <minus/>
                  
<apply><minus/><cn>3</cn></apply>
               
                  
<apply><minus/><ci>x</ci><ci>y</ci></apply>
               
Addition <plus/>
                  
<apply><plus/><ci>x</ci><ci>y</ci><ci>z</ci></apply>
               
Exponentiation <power/>
                  
<apply><power/><ci>x</ci><cn>3</cn></apply>
               
Remainder <rem/>
                  
<apply><rem/><ci> a </ci><ci> b </ci></apply>
               
Multiplication <times/>
                  
<apply><times/><ci>a</ci><ci>b</ci></apply>
               
Root <root/>
                  
<apply><root/>
  <degree><ci type="integer">n</ci></degree>
  <ci>a</ci>
</apply>
               
                  <apply><root/><ci>x</ci></apply>
               
                  
<apply><csymbol cd="arith1">root</csymbol>
  <ci>x</ci>
  <cn type="integer">2</cn>
</apply>
               
                  
<apply><root/>
  <degree><ci type="integer">n</ci></degree>
  <ci>a</ci>
</apply>
               
                  
<apply><csymbol cd="arith1">root</csymbol>
  <ci>a</ci>
  <cn type="integer">n</cn>
</apply>
               
Greatest common divisor <gcd/>
                  
<apply><gcd/><ci>a</ci><ci>b</ci><ci>c</ci></apply>
               
And <and/>
                  
<apply><and/><ci>a</ci><ci>b</ci></apply>
               
                  
<apply><and/>
  <bvar><ci>i</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><ci>n</ci></uplimit>
  <apply><gt/><apply><selector/><ci>a</ci><ci>i</ci></apply><cn>0</cn></apply>
</apply>
               
                  
<apply><csymbol cd="fns2">apply_to_list</csymbol>
  <csymbol cd="logic1">and</csymbol>
  <apply><csymbol cd="list1">map</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>i</ci></bvar>
      <apply><csymbol cd="relation1">gt</csymbol>
        <apply><csymbol cd="linalg1">vector_selector</csymbol>
          <ci>i</ci>
          <ci>a</ci>
        </apply>
        <cn>0</cn>
      </apply>
    </bind>
    <apply><csymbol cd="interval1">integer_interval</csymbol>
      <cn type="integer">0</cn>
      <ci>n</ci>
    </apply>
  </apply>
</apply>
               
Or <or/>
                  
<apply><or/><ci>a</ci><ci>b</ci></apply>
               
Exclusive Or <xor/>
                  
<apply><xor/><ci>a</ci><ci>b</ci></apply>
               
Not <not/>
                  
<apply><not/><ci>a</ci></apply>
               
Implies <implies/>
                  
<apply><implies/><ci>A</ci><ci>B</ci></apply>
               
Universal quantifier <forall/>
                  
<bind><forall/>
  <bvar><ci>x</ci></bvar>
  <apply><eq/>
    <apply><minus/><ci>x</ci><ci>x</ci></apply>
    <cn>0</cn>
  </apply>
</bind>
               
                     
<bind><forall/>
  <bvar><ci>p</ci></bvar>
  <bvar><ci>q</ci></bvar>
  <condition>
    <apply><and/>
      <apply><in/><ci>p</ci><rationals/></apply>
      <apply><in/><ci>q</ci><rationals/></apply>
      <apply><lt/><ci>p</ci><ci>q</ci></apply>
    </apply>
  </condition>
  <apply><lt/>
    <ci>p</ci>
    <apply><power/><ci>q</ci><cn>2</cn></apply>
  </apply>
</bind>
                  
                     
<bind><csymbol cd="quant1">forall</csymbol>
  <bvar><ci>p</ci></bvar>
  <bvar><ci>q</ci></bvar>
  <apply><csymbol cd="logic1">implies</csymbol>
    <apply><csymbol cd="logic1">and</csymbol>
      <apply><csymbol cd="set1">in</csymbol>
        <ci>p</ci>
        <csymbol cd="setname1">Q</csymbol>
        </apply>
      <apply><csymbol cd="set1">in</csymbol>
        <ci>q</ci>
        <csymbol cd="setname1">Q</csymbol>
      </apply>
      <apply><csymbol cd="relation1">lt</csymbol><ci>p</ci><ci>q</ci></apply>
    </apply>
    <apply><csymbol cd="relation1">lt</csymbol>
      <ci>p</ci>
      <apply><csymbol cd="arith1">power</csymbol>
        <ci>q</ci>
        <cn>2</cn>
      </apply>
    </apply>
  </apply>
</bind>
                  
Existential quantifier <exists/>
                  
<bind><exists/>
  <bvar><ci>x</ci></bvar>
  <apply><eq/>
    <apply><ci>f</ci><ci>x</ci></apply>
    <cn>0</cn>
  </apply>
</bind>
               
                  
<apply><exists/>
  <bvar><ci>x</ci></bvar>
  <domainofapplication>
    <integers/>
  </domainofapplication>
   <apply><eq/>
    <apply><ci>f</ci><ci>x</ci></apply>
    <cn>0</cn>
  </apply>
</apply>
               
                  
<bind><csymbol cd="quant1">exists</csymbol>
  <bvar><ci>x</ci></bvar>
  <apply><csymbol cd="logic1">and</csymbol>
    <apply><csymbol cd="set1">in</csymbol>
      <ci>x</ci>
      <csymbol cd="setname1">Z</csymbol>
    </apply>
    <apply><csymbol cd="relation1">eq</csymbol>
      <apply><ci>f</ci><ci>x</ci></apply>
      <cn>0</cn>
    </apply>
  </apply>
</bind>
               
Absolute Value <abs/>
                  
<apply><abs/><ci>x</ci></apply>
               
Complex conjugate <conjugate/>
                  
<apply><conjugate/>
  <apply><plus/>
    <ci>x</ci>
    <apply><times/><cn>&#x2148;</cn><ci>y</ci></apply>
  </apply>
</apply>
               
Argument <arg/>
                  
<apply><arg/>
  <apply><plus/>
    <ci> x </ci>
    <apply><times/><imaginaryi/><ci>y</ci></apply>
  </apply>
</apply>
               
Real part <real/>
                  
<apply><real/>
  <apply><plus/>
    <ci>x</ci>
    <apply><times/><imaginaryi/><ci>y</ci></apply>
  </apply>
</apply>
               
Imaginary part <imaginary/>
                  
<apply><imaginary/>
  <apply><plus/>
    <ci>x</ci>
    <apply><times/><imaginaryi/><ci>y</ci></apply>
  </apply>
</apply>
               
Lowest common multiple <lcm/>
                  
<apply><lcm/><ci>a</ci><ci>b</ci><ci>c</ci></apply>
               
Floor <floor/>
                  
<apply><floor/><ci>a</ci></apply>
               
Ceiling <ceiling/>
                  
<apply><ceiling/><ci>a</ci></apply>
               

Relations

Equals <eq/>
                  
<apply><eq/>
  <cn type="rational">2<sep/>4</cn>
  <cn type="rational">1<sep/>2</cn>
</apply>
               
Not Equals <neq/>
                  
<apply><neq/><cn>3</cn><cn>4</cn></apply>
               
Greater than <gt/>
                  
<apply><gt/><cn>3</cn><cn>2</cn></apply>
               
Less Than <lt/>
                  
<apply><lt/><cn>2</cn><cn>3</cn><cn>4</cn></apply>
               
Greater Than or Equal <geq/>
                  
<apply><geq/><cn>4</cn><cn>3</cn><cn>3</cn></apply>
               
                  
<apply><csymbol cd="fns2">predicate_on_list</csymbol>
 <csymbol cd="reln1">geq</csymbol>
 <apply><csymbol cd="list1">list</csymbol>
  <cn>4</cn><cn>3</cn><cn>3</cn>
 </apply>
</apply>
               
Less Than or Equal <leq/>
                  
<apply><leq/><cn>3</cn><cn>3</cn><cn>4</cn></apply>
               
Equivalent <equivalent/>
                  
<apply><equivalent/>
  <ci>a</ci>
  <apply><not/><apply><not/><ci>a</ci></apply></apply>
</apply>
               
Approximately <approx/>
                  
<apply><approx/>
  <pi/>
  <cn type="rational">22<sep/>7</cn>
</apply>
               
Factor Of <factorof/>
                  
<apply><factorof/><ci>a</ci><ci>b</ci></apply>
               

Calculus and Vector Calculus

Integral <int/>
                  
<apply><eq/>
  <apply><int/><sin/></apply>
  <cos/>
</apply>
               
                  
<apply><int/>
  <interval><ci>a</ci><ci>b</ci></interval>
  <cos/>
</apply>
               
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><cn>1</cn></uplimit>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
</apply>
               
Rewrite: int
                     
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <ci>expression-in-x</ci>
</apply>
                  
                     
<apply>
  <apply><csymbol cd="calculus1">int</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <ci>expression-in-x</ci>
    </bind>
  </apply>
  <ci>x</ci>
</apply>
                  
                     
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <apply><cos/><ci>x</ci></apply>
</apply>
                  
                     
<apply>
  <apply><csymbol cd="calculus1">int</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <apply><cos/><ci>x</ci></apply>
    </bind>
  </apply>
  <ci>x</ci>
</apply>

                  
                     
<apply><int/>
  <domainofapplication><ci>C</ci></domainofapplication>
  <ci>f</ci>
</apply>
                  
                     
<apply><csymbol cd="calculus1">defint</csymbol><ci>C</ci><ci>f</ci></apply>
                  
Rewrite: defint
                     
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <domainofapplication><ci>D</ci></domainofapplication>
  <ci>expression-in-x</ci>
</apply>
                  
                     
<apply><csymbol cd="calculus1">defint</csymbol>
  <ci>D</ci>  
  <bind><csymbol cd="fns1">lambda</csymbol>
  <bvar><ci>x</ci></bvar>
  <ci>expression-in-x</ci>
  </bind>
</apply>
                  
Rewrite: defint limits
                  
<apply><int/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><ci>a</ci></lowlimit>
  <uplimit><ci>b</ci></uplimit>
  <ci>expression-in-x</ci>
</apply>
               
                  
<apply><csymbol cd="calculus1">defint</csymbol>
  <apply><csymbol cd="interval1">oriented_interval</csymbol>
    <ci>a</ci> <ci>b</ci>
  </apply>
  <bind><csymbol cd="fns1">lambda</csymbol>
  <bvar><ci>x</ci></bvar>
  <ci>expression-in-x</ci>
  </bind>
</apply>
               
                  
<bind><int/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <condition>
    <apply><and/>
      <apply><leq/><cn>0</cn><ci>x</ci></apply>
      <apply><leq/><ci>x</ci><cn>1</cn></apply>
      <apply><leq/><cn>0</cn><ci>y</ci></apply>
      <apply><leq/><ci>y</ci><cn>1</cn></apply>
    </apply>
  </condition>
  <apply><times/>
    <apply><power/><ci>x</ci><cn>2</cn></apply>
    <apply><power/><ci>y</ci><cn>3</cn></apply>
  </apply>
</bind>
               
                  
<apply><csymbol cd="calculus1">defint</csymbol>
 <apply><csymbol cd="set1">suchthat</csymbol>
  <apply><csymbol cd="set1">cartesianproduct</csymbol>
   <csymbol cd="setname1">R</csymbol>
   <csymbol cd="setname1">R</csymbol>
  </apply>
  <apply><csymbol cd="logic1">and</csymbol>
   <apply><csymbol cd="arith1">leq</csymbol><cn>0</cn><ci>x</ci></apply>
   <apply><csymbol cd="arith1">leq</csymbol><ci>x</ci><cn>1</cn></apply>
   <apply><csymbol cd="arith1">leq</csymbol><cn>0</cn><ci>y</ci></apply>
   <apply><csymbol cd="arith1">leq</csymbol><ci>y</ci><cn>1</cn></apply>
  </apply>
  <bind><csymbol cd="fns11">lambda</csymbol>
   <bvar><ci>x</ci></bvar>
   <bvar><ci>y</ci></bvar>
   <apply><csymbol cd="arith1">times</csymbol>
    <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><cn>2</cn></apply>
    <apply><csymbol cd="arith1">power</csymbol><ci>y</ci><cn>3</cn></apply>
   </apply>
  </bind>
 </apply>
</apply>
               
Differentiation <diff/>
                  <apply><diff/><ci>f</ci></apply>
               
                  
<apply><eq/>
  <apply><diff/>
    <bvar><ci>x</ci></bvar>
    <apply><sin/><ci>x</ci></apply>
  </apply>
  <apply><cos/><ci>x</ci></apply>
</apply>
               
                  
<apply><diff/>
  <bvar><ci>x</ci><degree><cn>2</cn></degree></bvar>
  <apply><power/><ci>x</ci><cn>4</cn></apply>
</apply>
               
Rewrite: diff
                     
<apply><diff/>
  <bvar><ci>x</ci></bvar>
  <ci>expression-in-x</ci>
</apply>
                  
                     
<apply>
  <apply><csymbol cd="calculus1">diff</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <ci>E</ci>
    </bind>
  </apply>
  <ci>x</ci>
</apply>
                  
                     
<apply><diff/>
  <bvar><ci>x</ci></bvar>
  <apply><sin/><ci>x</ci></apply>
</apply>
                  
                     
<apply>
  <apply><csymbol cd="calculus1">diff</csymbol>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>
    </bind>
  </apply>
  <ci>x</ci>
</apply>
                  
Rewrite: nthdiff
                  
<apply><diff/>
  <bvar><ci>x</ci><degree><ci>n</ci></degree></bvar>
  <ci>expression-in-x</ci>
</apply>
               
                  
<apply>
  <apply><csymbol cd="calculus1">nthdiff</csymbol>
    <ci>n</ci>
    <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <ci>expression-in-x</ci>
    </bind>
  </apply>
  <ci>x</ci>
</apply>
               
                  
<apply><diff/>
  <bvar><degree><cn>2</cn></degree><ci>x</ci></bvar>
  <apply><sin/><ci>x</ci></apply>
</apply>
               
                  
<apply>
  <apply><csymbol cd="calculus1">nthdiff</csymbol>
    <cn>2</cn>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <apply><csymbol cd="transc1">sin</csymbol><ci>x</ci></apply>
    </bind>
  </apply>
  <ci>x</ci>
</apply>
               
Partial Differentiation <partialdiff/>
                  
<apply><partialdiff/>
  <list><cn>1</cn><cn>1</cn><cn>3</cn></list>
  <ci type="function">f</ci>
</apply>
               
                  
<apply><partialdiff/>
  <list><cn>1</cn><cn>1</cn><cn>3</cn></list>
  <lambda>
   <bvar><ci>x</ci></bvar>
   <bvar><ci>y</ci></bvar>
   <bvar><ci>z</ci></bvar>
   <apply><ci>f</ci><ci>x</ci><ci>y</ci><ci>z</ci></apply>
  </lambda>
</apply>
               
                  
<apply><partialdiff/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <apply><ci type="function">f</ci><ci>x</ci><ci>y</ci></apply>
</apply>
               
                  
<apply><partialdiff/>
  <bvar><ci>x</ci><degree><ci>m</ci></degree></bvar>
  <bvar><ci>y</ci><degree><ci>n</ci></degree></bvar>
  <degree><ci>k</ci></degree>
  <apply><ci type="function">f</ci>
    <ci>x</ci>
    <ci>y</ci>
  </apply>
</apply>
               
Rewrite: partialdiffdegree
                     
<apply><partialdiff/>
  <bvar><ci>x1</ci><degree><ci>n1</ci></degree></bvar>
  <bvar><ci>xk</ci><degree><ci>nk</ci></degree></bvar>
  <degree><ci>total-n1-nk</ci></degree>
  <ci>expression-in-x1-xk</ci>
</apply>
                  
                  
<apply>
  <apply><csymbol cd="calculus1">partialdiffdegree</csymbol>
    <apply><csymbol cd="list1">list</csymbol>
      <ci>n1</ci> <ci>nk</ci>
    </apply>
    <ci>total-n1-nk</ci>
    <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x1</ci></bvar>
    <bvar><ci>xk</ci></bvar>
    <ci>expression-in-x1-xk</ci>
   </bind>
  </apply>
  <ci>x1</ci>
  <ci>xk</ci>
</apply>
               
                     
<apply><csymbol cd="arith1">plus</csymbol>
  <ci>n1</ci> <ci>nk</ci>
</apply>
                  
                     
<apply><partialdiff/>
  <bvar><ci>x</ci><degree><ci>n</ci></degree></bvar>
  <bvar><ci>y</ci><degree><ci>m</ci></degree></bvar>
  <apply><sin/>
    <apply><times/><ci>x</ci><ci>y</ci></apply>
  </apply>
</apply>
                  
                     
<apply>
  <apply><csymbol cd="calculus1">partialdiffdegree</csymbol>
    <apply><csymbol cd="list1">list</csymbol>
      <ci>n</ci><ci>m</ci>
    </apply>
    <apply><csymbol cd="arith1">plus</csymbol>
      <ci>n</ci><ci>m</ci>
    </apply>
    <bind><csymbol cd="fns1">lambda</csymbol>
      <bvar><ci>x</ci></bvar>
      <bvar><ci>y</ci></bvar>
      <apply><csymbol cd="transc1">sin</csymbol>
        <apply><csymbol cd="arith1">times</csymbol>
          <ci>x</ci><ci>y</ci>
        </apply>
      </apply>
    </bind>
    <ci>x</ci>
    <ci>y</ci>
  </apply>
</apply>
                  
Divergence <divergence/>
                  
<apply><divergence/><ci>a</ci></apply>
               
                  
<apply><divergence/>
  <ci type="vector">E</ci>
</apply>
               
                  
<apply><divergence/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <bvar><ci>z</ci></bvar>
  <vector>
    <apply><plus/><ci>x</ci><ci>y</ci></apply>
    <apply><plus/><ci>x</ci><ci>z</ci></apply>
    <apply><plus/><ci>z</ci><ci>y</ci></apply>
  </vector>
</apply>
               
Gradient <grad/>
                  
<apply><grad/><ci type="function">f</ci></apply>
               
                  
<apply><grad/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <bvar><ci>z</ci></bvar>
  <apply><times/><ci>x</ci><ci>y</ci><ci>z</ci></apply>
</apply>
               
Curl <curl/>
                  
<apply><curl/><ci>a</ci></apply>
               
Laplacian <laplacian/>
                  
<apply><laplacian/><ci type="vector">E</ci></apply>
               
                  
<apply><laplacian/>
  <bvar><ci>x</ci></bvar>
  <bvar><ci>y</ci></bvar>
  <bvar><ci>z</ci></bvar>
  <apply><ci>f</ci><ci>x</ci><ci>y</ci></apply>
</apply>
               

Theory of Sets

Set <set>
                  
<set>
  <ci>a</ci><ci>b</ci><ci>c</ci>
</set>
               
                  
<set>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><lt/><ci>x</ci><cn>5</cn></apply>
  </condition>
  <ci>x</ci>
</set>
               
                  
<set>
  <bvar><ci type="set">S</ci></bvar>
  <condition>
    <apply><in/><ci>S</ci><ci type="list">T</ci></apply>
  </condition>
  <ci>S</ci>
</set>
               
                  
<set>
  <bvar><ci> x </ci></bvar>
  <condition>
    <apply><and/>
      <apply><lt/><ci>x</ci><cn>5</cn></apply>
      <apply><in/><ci>x</ci><naturalnumbers/></apply>
    </apply>
  </condition>
  <ci>x</ci>
</set>
               
List <list>
                  
<list>
  <ci>a</ci><ci>b</ci><ci>c</ci>
</list>
               
                  
<list order="numeric">
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><lt/><ci>x</ci><cn>5</cn></apply>
  </condition>
</list>
               
Union <union/>
                  
<apply><union/><ci>A</ci><ci>B</ci></apply>
               
                  
<apply><union/>
  <bvar><ci type="set">S</ci></bvar>
  <domainofapplication>
    <ci type="list">L</ci>
  </domainofapplication>
  <ci type="set"> S</ci>
</apply>
               
Intersect <intersect/>
                  
<apply><intersect/>
  <ci type="set"> A </ci>
  <ci type="set"> B </ci>
</apply>
               
                  
<apply><intersect/>
  <bvar><ci type="set">S</ci></bvar>
  <domainofapplication><ci type="list">L</ci></domainofapplication>
  <ci type="set"> S </ci>
</apply>
               
Set inclusion <in/>
                  
<apply><in/><ci>a</ci><ci type="set">A</ci></apply>
               
Set exclusion <notin/>
                  
<apply><notin/><ci>a</ci><ci type="set">A</ci></apply>
               
Subset <subset/>
                  
<apply><subset/>
  <ci type="set">A</ci>
  <ci type="set">B</ci>
</apply>
               
Proper Subset <prsubset/>
                  
<apply><prsubset/>
  <ci type="set">A</ci>
  <ci type="set">B</ci>
</apply>
               
Not Subset <notsubset/>
                  
<apply><notsubset/>
  <ci type="set">A</ci>
  <ci type="set">B</ci>
</apply>
               
Not Proper Subset <notprsubset/>
                  
<apply><notprsubset/>
  <ci type="set">A</ci>
  <ci type="set">B</ci>
</apply>
               
Set Difference <setdiff/>
                  
<apply><setdiff/>
  <ci type="set">A</ci>
  <ci type="set">B</ci>
</apply>
               
Cardinality <card/>
                  
<apply><eq/>
  <apply><card/><ci>A</ci></apply>
  <cn>5</cn>
</apply>
               
Cartesian product <cartesianproduct/>
                  
<apply><cartesianproduct/><ci>A</ci><ci>B</ci></apply>
               

Sequences and Series

Sum <sum/>
                  
<apply><sum/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><ci>a</ci></lowlimit>
  <uplimit><ci>b</ci></uplimit>
  <apply><ci>f</ci><ci>x</ci></apply>
</apply>
               
                  
<apply><sum/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><in/><ci>x</ci><ci type="set">B</ci></apply>
  </condition>
  <apply><ci type="function">f</ci><ci>x</ci></apply>
</apply>
               
                  
<apply><sum/>
  <domainofapplication>
    <ci type="set">B</ci>
  </domainofapplication>
  <ci type="function">f</ci>
</apply>
               
                  
<apply><sum/>
  <bvar><ci>i</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><cn>100</cn></uplimit>
  <apply><power/><ci>x</ci><ci>i</ci></apply>
</apply>
               
                  
<apply><csymbol cd="arith1">sum</csymbol>
  <apply><csymbol cd="interval1">integer_interval</csymbol>
    <cn>0</cn>
    <cn>100</cn>
  </apply>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>i</ci></bvar>
    <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>i</ci></apply>
  </bind>
</apply>
               
Product <product/>
                  
<apply><product/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><ci>a</ci></lowlimit>
  <uplimit><ci>b</ci></uplimit>
  <apply><ci type="function">f</ci>
    <ci>x</ci>
  </apply>
</apply>
               
                  
<apply><product/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><in/>
      <ci>x</ci>
      <ci type="set">B</ci>
    </apply>
  </condition>
  <apply><ci>f</ci><ci>x</ci></apply>
</apply>
               
                  
<apply><product/>
  <bvar><ci>i</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <uplimit><cn>100</cn></uplimit>
  <apply><power/><ci>x</ci><ci>i</ci></apply>
</apply>
               
                  
<apply><csymbol cd="arith1">product</csymbol>
  <apply><csymbol cd="interval1">integer_interval</csymbol>
    <cn>0</cn>
    <cn>100</cn>
  </apply>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>i</ci></bvar>
    <apply><csymbol cd="arith1">power</csymbol><ci>x</ci><ci>i</ci></apply>
  </bind>
</apply>
               
Limits <limit/>
                  
<apply><limit/>
  <bvar><ci>x</ci></bvar>
  <lowlimit><cn>0</cn></lowlimit>
  <apply><sin/><ci>x</ci></apply>
</apply>
               
                  
<apply><limit/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><tendsto/><ci>x</ci><cn>0</cn></apply>
  </condition>
  <apply><sin/><ci>x</ci></apply>
</apply>
               
                  
<apply><limit/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><tendsto type="above"/><ci>x</ci><ci>a</ci></apply>
  </condition>
  <apply><sin/><ci>x</ci></apply>
</apply>
               
Rewrite: limits condition
                  
<apply><limit/>
  <bvar><ci>x</ci></bvar>
  <condition>
    <apply><tendsto/><ci>x</ci><cn>0</cn></apply>
  </condition>
  <ci>expression-in-x</ci>
</apply>
               
                  
<apply><csymbol cd="limit1">limit</csymbol>
  <cn>0</cn>
  <csymbol cd="limit1">null</csymbol>
  <bind><csymbol cd="fns1">lambda</csymbol>
    <bvar><ci>x</ci></bvar>
    <ci>expression-in-x</ci>
  </bind>
</apply>
               
Tends To <tendsto/>
                  
<apply><tendsto type="above"/>
  <apply><power/><ci>x</ci><cn>2</cn></apply>
   <apply><power/><ci>a</ci><cn>2</cn></apply>
</apply>
               
                  
<apply><tendsto/>
  <vector><ci>x</ci><ci>y</ci></vector>
   <vector>
     <apply><ci type="function">f</ci><ci>x</ci><ci>y</ci></apply>
     <apply><ci type="function">g</ci><ci>x</ci><ci>y</ci></apply>
   </vector>
</apply>
               
Rewrite: tendsto
                  
<tendsto/>

               
                  
<semantics>
 <ci>tendsto</ci>
 <annotation-xml encoding="MathML-Content">
  <tendsto/>
 </annotation-xml>
</semantics>
               

Elementary classical functions

Common trigonometric functions <sin/>, <cos/>, <tan/>, <sec/>, <csc/>, <cot/>
                  
<apply><sin/><ci>x</ci></apply>
               
                  
<apply><sin/>
  <apply><plus/>
    <apply><cos/><ci>x</ci></apply>
    <apply><power/><ci>x</ci><cn>3</cn></apply>
  </apply>
</apply>
               
Common inverses of trigonometric functions <arcsin/>, <arccos/>, <arctan/>, <arcsec/>, <arccsc/>, <arccot/>
                  
<apply><arcsin/><ci>x</ci></apply>
               
                  
<mrow>
 <mi>arcsin</mi>
 <mo>&#x2061;</mo>
 <mi>x</mi>
</mrow>
               
                  
<mrow>
 <msup><mi>sin</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup>
 <mo>&#x2061;</mo>
 <mi>x</mi>
</mrow>
               
Common hyperbolic functions <sinh/>, <cosh/>, <tanh/>, <sech/>, <csch/>, <coth/>
                  
<apply><sinh/><ci>x</ci></apply>
               
Common inverses of hyperbolic functions <arcsinh/>, <arccosh/>, <arctanh/>, <arcsech/>, <arccsch/>, <arccoth/>
                  
<apply><arcsinh/><ci>x</ci></apply>
               
                  
<mrow>
 <mi>arcsinh</mi>
 <mo>&#x2061;</mo>
 <mi>x</mi>
</mrow>
               
                  
<mrow>
 <msup><mi>sinh</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup>
 <mo>&#x2061;</mo>
 <mi>x</mi>
</mrow>
               
Exponential <exp/>
                  
<apply><exp/><ci>x</ci></apply>
               
Natural Logarithm <ln/>
                  
<apply><ln/><ci>a</ci></apply>
               
Logarithm <log/> , <logbase>
                  
<apply><log/>
  <logbase><cn>3</cn></logbase>
  <ci>x</ci>
</apply>
               
                  
<apply><log/><ci>x</ci></apply>
               
                  <apply><plus/>
  <apply>
    <log/>
    <logbase><cn>2</cn></logbase>
    <ci>x</ci>
  </apply>
  <apply>
    <log/>
    <ci>y</ci>
  </apply>
</apply>


               
                  <apply>
  <csymbol cd="arith1">plus</csymbol>
  <apply>
    <csymbol cd="transc1">log</csymbol>
    <cn>2</cn>
    <ci>x</ci>
  </apply>
  <apply>
    <csymbol cd="transc1">log</csymbol>
    <cn>10</cn>
    <ci>y</ci>
  </apply>
</apply>
               

Statistics

Mean <mean/>
                  
<apply><mean/>
  <cn>3</cn><cn>4</cn><cn>3</cn><cn>7</cn><cn>4</cn>
</apply>
               
                  
<apply><mean/><ci>X</ci></apply>
               
Standard Deviation <sdev/>
                  
<apply><sdev/>
  <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>
</apply>
               
                  
<apply><sdev/>
  <ci type="discrete_random_variable">X</ci>
</apply>
               
Variance <variance/>
                  
<apply><variance/>
  <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>
</apply>
               
                  
<apply><variance/>
  <ci type="discrete_random_variable"> X</ci>
</apply>
               
Median <median/>
                  
<apply><median/>
  <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>
</apply>
               
Mode <mode/>
                  
<apply><mode/>
  <cn>3</cn><cn>4</cn><cn>2</cn><cn>2</cn>
</apply>
               
Moment <moment/>, <momentabout>
                  
<apply><moment/>
  <degree><cn>3</cn></degree>
  <momentabout><mean/></momentabout>
  <cn>6</cn><cn>4</cn><cn>2</cn><cn>2</cn><cn>5</cn>
</apply>
               
                  
<apply><moment/>
  <degree><cn>3</cn></degree>
  <momentabout><ci>p</ci></momentabout>
  <ci>X</ci>
</apply>
               
                  
<apply><moment/>
  <degree><cn>3</cn></degree>
  <momentabout><ci>p</ci></momentabout>
  <ci>X</ci>
</apply>
               
                  
<apply><csymbol cd="s_dist1">moment</csymbol>
  <cn>3</cn>
  <ci>p</ci>
  <ci>X</ci>
</apply>
               

Linear Algebra

Vector <vector>
                  
<vector>
  <apply><plus/><ci>x</ci><ci>y</ci></apply>
  <cn>3</cn>
  <cn>7</cn>
</vector>
               
Matrix <matrix>
                  
<matrix>
  <bvar><ci type="integer">i</ci></bvar>
  <bvar><ci type="integer">j</ci></bvar>
  <condition>
    <apply><and/>
      <apply><in/>
        <ci>i</ci>
        <interval><ci>1</ci><ci>5</ci></interval>
      </apply>
      <apply><in/>
        <ci>j</ci>
        <interval><ci>5</ci><ci>9</ci></interval>
      </apply>
    </apply>
  </condition>
  <apply><power/><ci>i</ci><ci>j</ci></apply>
</matrix>
               
Matrix row <matrixrow>
Determinant <determinant/>
                  
<apply><determinant/>
  <ci type="matrix">A</ci>
</apply>
               
Transpose <transpose/>
                  
<apply><transpose/>
  <ci type="matrix">A</ci>
</apply>
               
Selector <selector/>
                  
<apply><selector/><ci type="vector">V</ci><cn>1</cn></apply>
               
                  
<apply><eq/>
  <apply><selector/>
    <matrix>
      <matrixrow><cn>1</cn><cn>2</cn></matrixrow>
      <matrixrow><cn>3</cn><cn>4</cn></matrixrow>
    </matrix>
    <cn>1</cn>
  </apply>
  <matrix>
    <matrixrow><cn>1</cn><cn>2</cn></matrixrow>
  </matrix>
</apply>
               
Vector product <vectorproduct/>
                  
<apply><eq/>
  <apply><vectorproduct/>
    <ci type="vector"> A </ci>
    <ci type="vector"> B </ci>
 </apply>
  <apply><times/>
    <ci>a</ci>
    <ci>b</ci>
    <apply><sin/><ci>&#x3b8;</ci></apply>
    <ci type="vector"> N </ci>
  </apply>
</apply>
               
Scalar product <scalarproduct/>
                  
<apply><eq/>
  <apply><scalarproduct/>
    <ci type="vector">A</ci>
    <ci type="vector">B</ci>
  </apply>
  <apply><times/>
    <ci>a</ci>
    <ci>b</ci>
    <apply><cos/><ci>&#x3b8;</ci></apply>
  </apply>
</apply>
               
Outer product <outerproduct/>
                  
<apply><outerproduct/>
  <ci type="vector">A</ci>
  <ci type="vector">B</ci>
</apply>
               

Constant and Symbol Elements

integers <integers/>
                  
<apply><in/>
  <cn type="integer"> 42 </cn>
  <integers/>
</apply>
               
reals <reals/>
                  
<apply><in/>
  <cn type="real"> 44.997</cn>
  <reals/>
</apply>
               
Rational Numbers <rationals/>
                  
<apply><in/>
  <cn type="rational"> 22 <sep/>7</cn>
  <rationals/>
</apply>
               
Natural Numbers <naturalnumbers/>
                  
<apply><in/>
  <cn type="integer">1729</cn>
  <naturalnumbers/>
</apply>
               
complexes <complexes/>
                  
<apply><in/>
  <cn type="complex-cartesian">17<sep/>29</cn>
  <complexes/>
</apply>
               
primes <primes/>
                  
<apply><in/>
  <cn type="integer">17</cn>
  <primes/>
</apply>
               
Exponential e <exponentiale/>
                  
<apply><eq/>
  <apply><ln/><exponentiale/></apply>
  <cn>1</cn>
</apply>
               
Imaginary i <imaginaryi/>
                  
<apply><eq/>
  <apply><power/><imaginaryi/><cn>2</cn></apply>
  <cn>-1</cn>
</apply>
               
Not A Number <notanumber/>
                  
<apply><eq/>
  <apply><divide/><cn>0</cn><cn>0</cn></apply>
  <notanumber/>
</apply>
               
True <true/>
                  
<apply><eq/>
  <apply><or/>
    <true/>
     <ci type="boolean">P</ci>
  </apply>
  <true/>
</apply>
               
False <false/>
                  
<apply><eq/>
  <apply><and/>
    <false/>
    <ci type="boolean">P</ci>
  </apply>
  <false/>
</apply>
               
Empty Set <emptyset/>
                  
<apply><neq/>
  <integers/>
  <emptyset/>
</apply>
               
pi <pi/>
                  
<apply><approx/>
  <pi/>
  <cn type="rational">22<sep/>7</cn>
</apply>
               
Euler gamma <eulergamma/>
                  
<apply><approx/>
  <eulergamma/>
  <cn>0.5772156649</cn>
</apply>
               
infinity <infinity/>
                  <infinity/>
               

Deprecated Content Elements

Declare <declare>

Relation <reln>

Relation <fn>

The Strict Content MathML Transformation